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ABSTRACT

The oscillation of solutions of the second ordenlmear damped dynamic equation(t)y (x(t))x2(£)* +
p(®)x2(t) + f(t,x(r (t))) = 0 on an arbitrary time scalE is investigated. A generalized Riccati transfoioratis
applied for the study of the Kamenev-type osciblatcriteria for this nonlinear dynamic equationv&al new sufficient

conditions for the oscillation of solutions areahbed to extend some known results in the liteeatur
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INTRODUCTION

Much recent attention has been given to dynamimggns on time scales, we refer the reader tdathémark
paper of S. Hilger [1]. Since then, several authimge expounded on various aspects of this newyhsee the survey
paper by Agarwal, Bohner, O'Regan and PetersonA2jme scaleT is an arbitrary nonempty closed subset of the real
numbersR. Thus,R; Z; N; N,, i.e., the real numbers, the integers, the natwatbers, and the nonnegative integers are

examples of time scales. On any time s@glee define the forward and backward jump operatgrs
o) =inf{s €T, s > t}, p(t) = sup{s € T, s < t}.

Apointtt € T, t > inf T is said to be left dense ji(t) = t, right dense ift < sup T and o(t) = ¢, left
scattered ifpo(t) < t, and right scattered #(t) > t. A functionf : T - R is called rd-continuous provided that it is
continuous at right dense points of T, andefssided limits exist (finite) at left-dense ptnofT. The set of rd-
continuous functionis denoted by, (T, R). By C}; (T, R), we mean the set of functions whose delta devigaizlongs to
C-q(T,R). In recent years, there has been much researeftyacbncerning the oscillation and nonoscillatiohsolutions
of various equations on time scales (see [5],[B],[Mowever, there are few results dealing the Izdmn of solutions of

delay dynamic equations on time scales [8-13].dvalig this trend, we are concerned in this papéh wscillation
for the second-order nonlinear delay dynamic equatof the type
(r(®OY (()x* ()™ + p(Ox*() + f(tx(x () = 0 (1.1)
We assume that
(Hy) r, v andp are real-valued positive rd-continuous functioared onT,

0 <p(t) < 1 and there are two positive constants, such that; < ¥ (x(t)) < c,.
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(Hy)t: T — Ris strictly increasing, and(t) < t andt — « ast —» «

(H3) f(t, u) € Cq(T XR,R) satisfiesuf(t, u) > 0, for u # 0 and there exists a positive
rd-continuous functiogp defined onT such that|@| >q(t) for u # 0.

2. MAIN RESULTS
We need the following lemma for the proof of megsults.

Lemma 2.1.Assume that x(t) is a positive solution of Eg. (1.1) on [t,, ). If

e _p(p) (L to)

© cq1(t) _
fo o At = o

and
J1(9)q(s) As = =,
then there exists t, € [t,, %)y, such that
@ x2() > 0, (r(t) P(x(D)x* ()" < 0 for t; € [tg, )y

(ii) @ is decreasing.

2.1)

(2.2)

Proof. Assume thate(t) is a positive solution of Eq. (1.1) dm,,o)r. Pick t, € [ty, ), Such thatx(t) > 0 and

x(t(t)) > 0 on[ty,©)r . Then without loss of generality we can takét) < 0 for allt >t, > t;. Now from (1.1)

we have

r®Y (x(©)x2(O)* + p®)x2(1) = — f(t,x* (1)) < 0.

Puttingy (¢) = — r(©)y (x(£))x(¢), then we can write (2.3) in the form

—_yA _L 7]
yo(t) O (x0) By(t) <0
Thus
y @ > - 20 By
Therefore

y(@) > y(t)e—pw (t,t;)

cq7r(t)

i.e.

— ()P (x(©))x2(t) > = ()P (x(t2))x (t)e—pery (¢ t5)

cqr(t)
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x2(t) < () (x(t2))x2(t,) ec_lz;((?) (t,t,)
lp (X(f)) r(t)
Then

r(e)p (e (ey) (52 &)
C

1 t3 T(S)

x(t) < x(t3) + As

By (2.1) we can see thai(t) » —o as t -« which contradicts the assumptia(it) > 0so x“(t) >0 and hence
(r(®) Y(x()x2())* < 0 for all larget. Now to prove(ii), we defineV (t) = x(t) — tx"(¢t), if there is at; €
[t,, )7 such thaV (t) > 0. Suppose this is false, thent) < 0 on [t3,©), thus

x(®)_, _ tx®(t) — x(t) -V ()

( t to(t) T ta(t) > 0.
Hence%t) is strictly increasing of;, )1 .Pick t, € [t5,%)r , so that(t) =7 (t,) forallt >t,. Then
x(T (@) _x(t(ty) _
o ot Y
x(7 (1)) = mz(t). (2.4)

But from (1.1) we have
(@Y (x(O)xAD)* + p(Ox (®) = = f(&,x7(1)) < 0.

ie.

()W (x(O)x ) < - f(£,x7(®) < —q(DxT(t) < —Bmq(t)T(t)
r(Y (x(£)x*(8) = r(t ) (x(ta))x*(t,) < —Bm t}z(s)r(s) As
ie.

()P (x(ta))x2(t) = m t:q(s)r(S) As

This contradicts (2.2). Therefove(t) > 0 for allt € [t;,0); , and hence(t) > tx*(t). Also we see that

x(t) tx2t)— x(@t) =V (@)
t = ta(t) - to(t) <0

(

So@
t

is strictly decreasing dii;, ).

Theorem 2.2. Suppose that (2.1) holds. Furthermore, suppose that there exists a positive A —differentiable function §(t)

such that, for all sufficiently large t; € [ty, ) , One has

lim sup

E(8(s)q(s)T(s)  cpsr()PA(s)) .
£ { a(s)  46(s)a(s) }AS—"O (2.5)

21
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where P(t):= §%(t) — SOPO) Then Eqg. (1.1) is oscillatory.

c2r(t)

Proof. Suppose to the contrary thett) is a nonoscillatory solution of (1.1). We may assuthatx(t) > 0, x(z(t)) >
0 V t € [t;,)r. The proof when(t) is eventually negative is similar. From Lemma &rd Eq. (1.1) it follows that

x(t(®) > 0, x2() > 0,(r () Yp(x()x*(1))* < 0 VYt =>t,. Define

(O (x(0)xA(8)
Then
A1° A7d
wh(t) = 62 [wa] +5[r¢xx ]

§A r ANA AN2
LG 2O NN )
0° x° xx°

From (1.1) andH3) we have

58 Spry x® x® 51‘1/) x2rp x
6 rp x° q x° x°  ryx

Sinces > t, then in view of(H,), and(rpx*)* < 0, we have

w'(t) £ —w
4 c,r x° x% c,r  x° x° x

&8 p (rpxt)° 5 x5 (Y x®) (rp x2)7 x°
PP g —— z

T a
Since% is strictly decreasing and< ¢; t < g, then j:—a = é x; = % , thus

A 5p . Oqr So

A ) < —w® — o o\2
W' () = 50 ¢ Czr(?“w o crt(69)? (@)
_ P s _ So o2 _ %at
=597 ~ e (W)= (2.6)
ie.

2
1 8o P |cytr c,trP?  8qt

Ay < |— o__ |22 2 __
W™ () = 6° cztrc?“w 2. 6o * 460 o
therefore

c,trP?  8qt

Ay < 2 __t

Wi = 460 o

Integrating this inequality from, to t, we get

ft 8()qa(s)T(s)  cpsr(s)P*(s)
¢ o(s) 45(s)a(s)

}As S w(ty) —w(t) < w(ty)
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This contradicts with (2.5), hence the proof isnpteted. By choosingS(t) = 1, t = t, in Theorem 2.2 we

have the following oscillation result.

Corollary 2.3. Assume that the assumptions of Theorem 2.2 hold and for all sufficiently large ¢,

lim Supft{(I(s)T(s) _spRe) }As o

t>o0 o(s) 4c,r(s)a(s)

1

Then every solution of Eq. (1.1) is oscillatory on [ty, ). By choosings(t) =t, t= t, in Theorem 2.2 we

have the following oscillation result.

Corollary 2.4. Assume that the assumptions of Theorem 2.2 hold. Then every solution of Eq. (1.1) is oscillatory on

[tg, ) provided that

t{SCI(S)T(S) 3 Czr(S)PZ(S)}AS .

fim sup o) 40(s)

—00
t1

where P(t) = 1 —®

cr(t)

Now, we define the function spa® as follows:H € R provided H is defined for t, < s <t t, s €
[to,©)r, H(t,t) = 0, H(t; s) =0 and H has a nonpositive continuods—partial derivative H%(t, s) >0 with

respect to the second variable and satisfies fmegoe R. The following theorem extends Theorem 2.2 of [5].

P(s) h(t,s)
H%(t,s) + H(t,s) 57(s) 57() VH(,s)

Theorem 2.5. Suppose that the assumptions of Theorem 2.2 hold. If there exists a positive functions H, h € R such that

for all sufficiently large t; € [t,, )7 , One hasthen every solution of Eq. (1.1) is oscillatory on [t,, ©) .

lim su

1 t(85(s)q(s)T(s) c, sT(s)h%(t,s) B
t—w pH(t, tO) _I;O{ }AS = 0, (27)

o) D) = e
Proof. Suppose to the contrary thaft) is a nonoscillatory solution of (1.1). Then aslimeorem 2.2 we hav,e(r(t)) >
0, xX2(t) >0, (r(t) Y(x())x2()* < 0 Vt=t; € [ty, o). We definew(t) as in Theorem 2.2, then from (2.6) we

have

6q'r< A_+_P - 6o ()2 28
o = @ TE® c,1t(89)2 @ (28)

Multiplying (2.8) byH(t, s) and integrating from; to t, we get

ftS(S)q(S)T(S)

o) H(t,s) As < ftwA(s)H(t, s)As + fti

t1

P(s)
57G) w?(s)H(t,s) As

1

- ftL(s)z (w)?(s)H(t,s) As
t1 czr(s)s((S”(s))

t L P(s)
=w(t)H(, t;) + f H%(t,s) w?(s) As + w?(s)H(t,s) As

ty £, 07(s)
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B ft 8(s)a(s)

——————— (w9)*(s)H(t,s) As
1 Czr(s)s(S‘T(s))

Thus

ftwmt, s) As < w(t)H(t, ty)

o(s)

1

2 | 8(s)a(s)H(t,s) h(t s) | cr(s)s CZT(S)ShZ(t s) A
_ftl 69(s) c,r(s)s w?(s) + 6(s)a(s) t1 46(5)0(5) s

t hz ’
< w(t))H(t, t;) +f %

i.e.

1 E(5(s)q(s)T(s) cy sT(s)h%(t,s)
H(t t1).f { -

=5) H(t,s) 15(5)0(s) }As < w(ty)

which contradicts (2.7) and hence the proof is geted.

Theorem 2.6. SQuppose that (2.1) holds. Furthermore, suppose that there exists a function g(t) such that r(t)g(t) isa
A — differentiable function and there exists a positive real rd-function v(t) such that, for all sufficiently large t, €

[to, @) , One has

t 2( )
I £ As = oo, 2.9
limup | (EG) - 37050 = oo 29)
1
o VI ()t __t7®p() 2tv? () g(t) vI()q®)z(t)
where  A(t):= OO0’ B(6):= V(t) rotwr® | ceu®’ and  E():= o T

trtw’Og*®) _ tp®vIE) _
cpo(t) cya(t)

v () [r(t)g(t)]*. Then Eq. (1.1) is oscillatory.

Proof. Suppose to the contrary thet) is a nonoscillatory solution of (1.1). We may amsuthatx(t) > O,x(r(t)) >
0 VteE [t,o)r. The proof wherx(t) is eventually negative is similar. From Lemma amd Eq. (1.1) it follows that

x(t(®) > 0, x2() >0, (r(®) P(x(®)x ()2 < 0 VYt =1t; € [ty ©)7. Define

r(®)P(x(0))xA (1)
x(t)

u(t) =v()| +r()g(®)]
Then

rp x4

A A
ub(t) = v [rtpxx + rg] +v° [ + rg]

A ANA AN2
4 (r x7) r (x7)
= —u+v° —-v° +v[rg]®
v x° xx° [rg]

From (1.1) andH3) we have

Index Copernicus Value: 3.0 - Articles can be sernb editor@impactjournals.us




New Criteria for Oscillation of Second Order Nonlirear Dynamic Equations with Damping on Time Scales

85

A o A T o
v vpry x° x x v° x u
A o 2 o A
ur(t) £ —u-— ——v'q————(=—1rg)+vr
®) " W x X 9 rpxe G -9 [rg]
Using Lemma 2.1 an@H,), we get
A o o O 40,2 o o 2
v vopt u v°qr  votu 2vtu  votr
ub(t) < —u-— P (——r )— v _ > - g +vo[rg]?
v C,10 \v o CoTOv C,0v Cy,0

vopt "t voptg 3 voqt 3 vot 2v%tu 3 votrg?

v
ur(t) € —u-— Su? + vo[rg]*
v C,rov C, 0 o C,Tav C,0V C, 0
Au? +Bu—E=—[VA B]2+B2 E
= —Au u—F=-— U—— ——
VAT 44
ie.
B2(t)
Al < —E(t
ut(t) < 0 ®)

By integrating the above inequality, we obtain

t BZ(S)
ft (B) — 75085 < ulty) —u(®) < u(e)

This contradicts (2.9), and the proof is compleféte can get the following result by choosin) =1 in

Theorem 2.6.
Corollary 2.7. Assume that the assumptions of Theorem 2.5 hold and for some t, sufficiently large . We have

B%(s)
4A(s)

t
%im supf {E(s) — JAs = oo,
-0 ty

_t
cr(Da(®)’

Then Eq. (1.1) is oscillatory.

where A(t):=

cr(o(t)  co(t) o(t) cz0(t) c20(t)
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